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Inference of geometrical analogy between 
magnetic domain alignment in fabricated 
ferrornagnets and fluid flow 

C. Y. TAY 
IRC in Materials for High Performance Applications, University of Birmingham, P. O. Box 363, 
Birmingham B 15 2TT, UK 

A useful classification of fabricated ferromagnet sets can be inferred from graphs plotted with 
the HcB/B r and Hcl/B r ratios of individual magnets which are closely similar in material 
composition, properties and fabrication history. For each defined set, a mean characteristic 
curve is obtained which may be regression fitted by (i) a logarithmic and (ii) a second-order 
polynomial expression. Both these regression analyses are here further discussed with the 
resulting suggestion that the limiting type 1 and type 2 classification of ferromagnet sets can 
be associated with two modes of magnetization in which the corresponding domain patterns 
recall, respectively, the laminar and turbulent flow patterns of a fluid system analogue. 

1. Introduction 
A few discrete quantities that are associated with the 
demagnetization quadrant of the hysteresis loop, such 
as the remanence, B r, and the two coercivities, Hci and 
HoB, are conventionally defined to characterize the 
demagnetization behaviour of individual magnets. 
For high-coercivity rare-earth based magnets, how- 
ever, this characterization is especially incomplete be- 
cause their fabrication involves some powder metal- 
lurgical stages. There will be significant process-re- 
lated variables which tend to influence and complicate 
the demagnetization characteristics of such magnets. 
Consequently, the difficulties of elucidating the quasi- 
continuous demagnetization quadrant as sampled by 
a limited number of discrete point parameters are 
accentuated. An alternative approach has been sug- 
gested [1, 2] in which the ratios of parameters, for 
example, Hcj/B r ( = X )  and HcB/Br ( = Y), are employ- 
ed as the basic variables rather than the Br, Hc~ and 
Hc~ values themselves. For convenience, c.g.s, units 
are used so that X and Y are dimensionless. When the 
(X, Y) coordinates of similar magnets are plotted 
graphically, a statistical mean curve is discernible. In 
the present paper we extend previous logarithmic as 
well as second-order polynomial regression analyses 
relating to such Y versus X curves [1-4]  in order to 
clarify their usefulness for specifying the magnets 
which define the particular sets. In the process, we 
suggest that the Y versus X curves are observed 
because the X, Y ratios can provide sufficient informa- 
tion about the geometry of the individual demagnetiz- 
ation quadrants to enable an identification of features 
that are common to the magnets and hence the reason 
for treating them as forming a particular set. At the 
same time the suggestion is made that the previous 
classification of magnet sets into types 1 and 2, may on 

a more subtle level imply, instead, two corresponding 
modes of magnetic domain alignments. These modes 
are distinct in an analogous way that laminar and 
turbulent flow regimes may be distinguished for a fluid 
flow system. For magnet sets as with fluid flow, there 
are transitional regimes in which the magnet sets have 
features that are intermediate between those of types 1 
and 2. These we have previously assigned to a separate 
type T [3-5].  

Experimental data for 18 sets of fabricated magnets 
have previously been regression fitted to logarithmic 
equations of the form Y -- K X  L [5]. Of this number, 
we have also fitted 14 sets with regression polynomial 
equations of the form, Y = :z + I3X(1 - yX) [4]. Both 
regression schemes have been found to give similarly 
good fits to the 14 sets to which they have been 
applied in common [4]. The original references should 
be consulted for further details of these 14 sets which 
we shall specify here with the same convenient labels 
as in [5]: the cold polymer-bonded SmCox~5 sets 
M(F), HD(F), M(A) and HD(A) [1-5]; and the follow- 
ing sintered sets, NdDyFeB [6], Neomax 30-H and 35 
[7], SmCox_ 5 [8], MM-(Co, Cu, Fe, Mg) (A) and (B) 
(where MM = mischmetalle) [9], CoMMSm [10], 
CoSm [11] and the two PrSmCo sets (A) and (C) [12]. 

2. Logarithmic regression analysis 
In the present paper we shall mainly discuss the four 
magnet sets that had previously been classed as type 2 
on the basis that K + L ~ 1. Data points together 
with the graphs corresponding to both forms of re- 
gression equations for these sets are shown in Figs 
1 4. Examples of other sets which have been classified 
[3] as transitional (types 2-T and T) between types l 
and 2 will only be discussed when it is required to 
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Figure 1 Empirical (X, Y) data points for the polymer bonded M(F) 
set together with the logarithmic (L) and second-order polynomial 
(P) regression-fined curves [1-4]. 
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Figure 3 Empirical (X, Y) data points for the sintered PrSmCo(A) 
set [12] together with the logarithmic (L) and second-order poly- 
nomial (P) regression-fitted curves [1-41. 
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Figure 2 Empirical (X, Y) data points for the polymer bonded 
HD(F) set together with the logarithmic (L) and second-order 
polynomial (P) regression-fitted curves [1 4]. 

illustrate that such sets can also be regarded as the 
results of mixed type 1 and 2 component  character- 
istics. Further features of the logarithmic regression 
analysis will now be discussed while the polynomial 
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analysis will be separately discussed in Section 3 
below. 

2.1. Classification of ferromagnets (I) 
The equation Y =  KX L that can be fitted to the 
demagnetization data of a particular magnet set, 
where K and L are constants of fit, may also be 
considered as the solution of a recursion equation Y(n 
+ 1) = XY(n), where n = 0, 1, 2 . . . ,  and with X at any 

acceptable value, so that Y < 1 only [13]. The particu- 
lar initial expression Yo = KXL refers to the different 
magnets within a set, each with its specific X value, 
while the equation u + 1)=  XY(n) generates the 
alternatives of a particular magnet within the set 
which are related to it by the recursion operation, the 
connotations of which are discussed below. It can be 
easily verified that the general solution to the recur- 
sion equation is YN = KXU+L, where N = 0, 1, 2 . . . ,  
with Y0 = KXL, that is, a formulation chosen to be 
identical to the regression expression as obtained from 
empirical data. For convenience we shall hence revert 
to dropping the subscript zero when referring to the 
initial N = 0 expression which corresponds to the 
empirical regression equation of a particular magnet 
set. This chosen formulation of the general and the 
particular solutions to the recursion equation and 
indeed the equation itself is determined by the physical 
limitations on relations between Y and X. 

2. 1.1. Ideal types of ferromagnets (I) 
In order t o  discuss the chosen formulation of the 
logarithmic regression analysis and its suitability for 
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Figure 4 Empirical (X, Y) data points for the sintered NdDyFeB set 
[6] together with the logarithmic (L) and second-order polynomial 
(P) regression-fitted curves [1-4]. 

elucidating empirical data of fabricated magnet sets, 
we discuss firstly the limiting types of ferromagnets 
which possess ideally square demagnetization loops. 
These have been designated as ideal (or limiting) types 
1 and 2, defined through the original Becker condi- 
tions [1, 2, 14]. In terms of our scaled parameters, the 
equations for these type 1 and type 2 ideal sets are, 
respectively, Y = X and Y = 1. For each of these ideal 
types there is a further condition on the range of 
applicable X values, whereby for type 1 the range is 
0 < X _< 1 and for type 2, X _> 1, with the higher 
bound not clearly defined in this logarithmic equation 
case. Both limiting types can be represented by }1o 
initial recursion expressions. To achieve this for type 1 
we s e t K =  1 a n d L = l  and for type 2, K =  1 a n d L  
= 0. Under such a scheme, we observe that the Y1 

recursion in the type 2 case for which X > 1 maps into 
an extrapolation of the Yo expression for type 1, for 
which Y is, however, unacceptably greater than unity 
except at the singular X = 1 point. The Y1 expression 
for type 2 is thus identical to the Yo expression for type 
1 but only the latter is physically acceptable because 
the X range has been defined as 0 _< X _< 1. There is 
no provision for a mapping of either ideal type charac- 
teristics (L = 0 or 1) into the observed characteristics 
(0 < L < 1) of any fabricated magnet sets. 

2. 1.2. Fabricated types of ferromagnets (I) 
In order for the observed characteristics of fabricated 
ferromagnet sets to be accommodated in the logarith- 
mic recursion scheme we merely require that each of 
the L parameter for such sets lie between the extremes 

of the ideal types, that is, 0 < L < 1. Except for this 
difference, recursion of the equation for a fabricated 
set may be regarded in similar terms as for the limiting 
types. 

Principally, recursion of a mainly type 2 set equa- 
tion results in acceptable Y < 1 values only for a lower 
range of X values. We interpret this consequence of 
recursion as an emphasis of the potential type 1 
component that may be present, but only for a limited 
range of X beyond X = 1 in the original, mainly type 
2 set. To illustrate this, Figs 5 and 6 show the Yo, Y1 
and Y2 curves together with the empirical data points, 
for a type 2 set (the M(F) set) and a type T set (the 
sintered SmCo_ 5 set [81]), respectively. These graphs 
show that data points are present which are closer to 
the Y~ and Yz curves (for X values slightly greater 
than unity) than the corresponding Y0 curve for the 
type T set but not for the type 2 set. This feature is 
consistent with the classification of the sets, with the 
type 2 set essentially entirely devoid o f  type 1 charac- 
teristics for X ~ 1, whereas the type T set can then 
include a strong admixture of type 1 characteristics. 

2.2. Aspects of (X, Y) and ( - I n  K, L) 
correspondence 

When the Y = K X  L regression analysis was initially 
applied to sets of empirical data, the attribution of 
type 2 classification to four of the data sets was based 
on the immediately obvious observation that K 
+ L ~ 1 [1-3].  This observation is summarized in 

Table I by the K, L values obtained for the four type 2 
sets that have been so identified. This assignment of 
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Figm'e 5 Empirical (X, Y) data points for the polymer bonded M(F) 
set together with the recursion curves (Y1 and Y2) of the regression 
fitted logarithmic curve (Yo). 
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T A B L E  I Empirical values of K and L, for the fitted geometrical regression equation Y = K X  r, for the four identified type 2 sets, together 
with Y values calculated from the equation Y = K(4.3471) L for comparison with type 2 graphs concurrently at (4.3471, 1.0695) 

Ferromagnet set Reference K L Y = X Y calc. 

M(F) [1-3, 5] 0.567 0.432 0.368 1.0698 
HD(F) [1-3, 5] 0.727 0.259 0.650 1.0637 
PrSmCo(A) [12] 0.828 0.182 0.794 1.0819 
NdDyFeB [6] 0.895 0.117 0.882 1.0629 
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Figure 6 Empirical (X, Y) data points for the sintered SmCox_ 5 [8] 
set together with the recursion curves (Y1 and Y2) of the regression 
fitted logarithmic curve (Yo). 

type classification is consistent with the limiting type 2 
set for which Y =  1, that is, K = 1 and L = 0. Hence 
the K, L parameters of a particular set can be related 
to the aspects of demagnetization behaviour that are 
common to the individual magnets of the set. How- 
ever, we shall show that the expression suggesting this 
relationship is actually subtly different from the simple 
form of K + L = l .  

Instead of examining further the original Y = K X  L 

form of equation we consider its logarithmic form, 
which transforms into the linear equation L = (ln 
X) -1 I - I n  K + l n  Y]. When the ( - l n K ,  L) co- 
ordinates of the four type 2 sets are plotted (Fig. 7), we 
note that they are essentially collinear. The equation 
of this common line for the type 2 sets is L = 0.6805 
( - - l n K )  + 0.0457. Collinearity in ( - I n  K, L) co- 
ordinates corresponds to the concurrency of the ori- 
ginal Y = K X  L curves, with the common (X, Y) point 
at (4.3471, 1.0695). 

This ( - In K, L) collinearity is shown numerically 
in Table I by values of Ycalculated using the empirical 
K and L values in the linear ( -  In K, L) equation. 
This common line is also plotted in Fig. 7, together 
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Figure 7 Parameters of logarithmic regression equations (Y 
K X  L) plotted as ( - In K, L) coordinates for the 14 fabricated 

ferromagnet sets [1-4], classified as ( x )  types 2, (�9 2-T/T-2 and 
(~ )  T, together with the linear equation (line a, L = 0.6805 ( - In K) 
+ 0.0457), and the numerical relation (curve b, K + L = 1) as 

possible alternative conditions for the type 2 sets classification. 

with the curve that represents the condition K + L 
= 1. This figure illustrates graphically the nature of 

the near coincidence between the more exact condi- 
tion common to fabricated magnet sets with type 2 
character as expressed by the collinearity of ( - In K, 
L) in comparison to the numerically more immedi- 
ately apparent condition of K + L = 1. There are 
clearly many other aspects of geometrical correspond- 
ence that exist between the (X, Y) and ( - I n  K, L) 
representations in the logarithmic analysis. However, 
these are not germane to this paper and hence their 
further consideration is deferred for the present. Sim- 
ilarly, we shall not discuss here the features in Fig. 7 
which are associated with the K, L parameters of the 
remaining 10 magnet sets. 

3. P o l y n o m i a l  regression analysis  
The physical necessity fo r  Y_< 1 cannot be satis- 
factorily described by the general logarithmic equa- 



tion, Y = K X  L. However,  the range of  empirical data  
available for our  analysis is limited such that there is 
no definite indication of  the trend of Yas  a function of  
X as Y approaches  sufficiently near to unity. As stated 
previously [4], type 2 magnets  are necessarily fabri- 
cated th rough  powder  metallurgical process stages so 
that in the reconsti tut ion of the assembly of mag- 
netically aligned domain  particles to reform the integ- 
ral magnet  we anticipate statistically complex inter- 
domain  interactions to govern the eventual degree and 
nature of magnetic alignment that can be achieved. 
The principal resUlt of such interactions, as apparent ly 
indicated by the data  sets we have analysed, is t he  
practical limitation of Y values. With higher X values 
there is either an asymptot ic  approach  of  Y to unity or 
Y reaches a peak value for the particular magnet  set 
and then decreases again for potentially higher values 
of X. It is understandable that there is little practical 
inducement  to pursue the fabrication of any magnet  
set beyond the stage of magnets with near peak (X, Y) 
characteristics, nor  to report  such data  were they to 
have been obtained. We have therefore reanalysed the 
same data  sets with the alternative second-order  poly- 
nomial  which allows extrapolat ion to higher X values 
and can describe the general situation of a single Y 
versus X peak [4]. Application of this polynomial  
equat ion to the classification of ferromagnet  sets will 
be briefly set out  in the next subsection. Following this 
we discuss the scaling of X, and translation of Y, to 
recast the equat ion into a form which has been exten- 
sively employed in the formulat ion of the fundamental  
characteristics of non-linear systems behaviour [13]. 

3.1. Classification of ferromagnets (11) 
An advantage of the polynomial  equat ion over the 
logarithmic equat ion is that  the regression parameters 
represent, respectively, the propor t ions  of Y which are 
constant  (~), linear (13), and parabolic non-linear ([37) 
functions of X. These propor t ions  can then be era- 

ployed directly to classify the different type categories 
to which the empirical data  sets may be assigned. 

3. 1.1. Ideal types of ferromagnets (11) 
For  the type 1 ideal ferromagnet  set, Y = X, purely a 
linear function of X. Hence, the regression parameters  
are ~ = 0, [3 = I and [3y = 0. The type 2 ideal set 
equat ion is Y = i, independent of X. The polynomial  
equat ion then reduces to the ideal set form where 
= 1, and 13 = 0 and 137 = 0. Both the ideal sets are 

marked by the absence of any non-linear, [37, comport-. 
ent. For  an ideal type 1 set, the only term in X is linear, 
with [3 = 1  while the ideal type 2 set has only a 
constant  unit value of Y. This is consistent with the 
above logari thmic regression view that K = 1 for both 
ideal types but L can only be 1 (Y = X, type 1) or 0 (Y 
= l, type 2). 

3. 1,2. F a b r i c a t e d  t y p e s  o f  f e r r o m a g n e t s  ( l l )  
Values of the polynomial  regression parameters  for all 
14 sets of empirical data analysed are summarised in 
Table II. F rom this table we can find parallels that  
correspond with the scheme for the classification of  
ferromagnet  sets according to the basis of  the corres- 
ponding  K and L logari thmic regression parameters. 
In particular, the type 2 sets have cz values that are 
higher than those obtained for the other sets that  had 
been previously classified as types 2-T and T [3]. 
Correspondingly,  type 2 sets also possess lower 13 
values. Fabricated type 2 sets have a higher propor-  
tion of the ideal type 2 characteristics for which Y = 
= 1, independent of X; simultaneously, the propor-  

tion of ideal type 1 characteristic of Y = [3X = X, is 
relatively lower than for sets of  types 2-T and T, The 
non-linear X component  of Y, referred to the c~ com- 
ponent  (that is [3y/cz ) is also comparat ively lower for 
the type 2 sets. 

T A B L E I I Values of a, 13 and [37, for the second-order polynomial regression equation Y = ~ + [3X 137 Xz, together with the peak related 
values, A/4 ( = 13/47) 

Ferromagnet set Reference ~ 13 13y A/4 

Type 2 
M(F) [1 4] 0.2852 0.3202 0.0392 0.6545 
HD(F) [1-4] 0.4537 0.3054 0.0463 0.5033 
PrSmCo(A) [12] 0.4535 0.3798 0.0682 0.5290 
NdDyFeB [6] 0.6238 0.3570 0.0874 0.3646 

Type 2-T 
M(A) [ 1-4] 0.1872 0.4332 0.0593 0.7905 
HD(A) [1-4] 0.1961 0.6694 0.1532 0.7314 
CoSm [11] 0.1 t23 0.8902 0.2372 0.8351 
CoMMSm [10] 0.2342 0.4639 0.0828 0.6497 
MM-(Co, Cu, Fe, Mg) (B) [9] 0.2738 0.5777 0.1254 0.6656 
MM-(Co, Cu, Fe, Mg) (A) [9] 0.1188 0.8t57 0.2023 0.8223 

Type T 
SmC% _ 5 [8] 0]0919 0.8627 0.2347 0.7926 
Neomax 30-H [7] - 0.0623 1.3537 0.4370 1.0484 
PrSmCo(C) [12] - 3.5057 6.7830 2.5972 4.4287 
Neomax 35 [7] -- 0.0970 1.4712 0.5223 1.0361 
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3.2. Sca l ing  of X a n d  t rans la t ion  of  Y 
Regression polynomial equations for all the magnet 
data sets have hitherto been discussed in terms of the 
general form u = ~ + I3X(1 - ?X), for which, the do- 
main of X is 0 _< X _< 1/y. Fabricated type 2 magnets 
are especially distinguished by high coercivities so that 
the extent of the X domain can then greatly exceed the 
range of Y values, for which, the physical range is 
necessarily restricted to 0 < Y < 1. This general form 
of polynomial equation is, therefore, not suitable for 
consideration as a recursion equation in Y. It can, 
however, be rewritten in the two alternative forms of 
(i) Y =  ~ + AXs(1 - Xs) and (ii) YT = AXs(1 -- Xs), 
where A = 13/'/ (y4=0 in practice), Xs = T X and YT 
= Y -  C~. In these forms, X is scaled down to X s and 
Yis translated to YT. With the domain o fX s restricted 
to 0 _< X s < 1, either equation can then be regarded as 
a suitable recursion equation in Y only, the choice 
depending upon the value of the particular translation 
term (i.e. the constant ~). The recursion equations can 
be reformulated according as YN+ 1 = ~ + YT,.~+ 1 = 0~ 
+ AYN(1 - YN), where YN becomes the independent 

recursion variable replacing X s ( = yX). The recursion 
ranges are then ~ < Y_< cz + A/4 or 0_< YT--< A/4. 
Both of these ranges, for 11 of the 14 ferromagnet sets 
we have analysed (Table II), are contained within the 
X s domain of 0 < X s _< 1. For  the three exceptions, 
the ~ values are negative so that only the YN+I = c~ 
+ AYN(1 -- YN) recursion equation is suitable to en- 

sure that the peak YN+ 1 value does not exceed unity. 
We have also noted above that the direct use of X as 
the independent recursion variable in the logarithmic 
regression equation cannot be suitable for generating 
YN+I from YN. Because we have defined Y = H~B/B, 
and X = H d B  ~, the inference here that Y is the first 
reiterate of X which has been scaled down by the 
parameter, T, may be taken to imply that the H ~  value 
for the demagnetization curve of a particular magnet 
is related to a specific fraction of the corresponding 
Hc~ value; the fraction is y, which is a characteristic 
regression parameter of the set of which that magnet is 
a member. 

The consequences that can arise from reiteration 
according to the recursion equation, YN+t --AYN( 1 

YN), are very thoroughly analysed in the celebrated 
paper by May [15]. Different regimes of Y recursion 
behaviour ranging from simple, fixed points through 
complicated period doubling cascades to chaotically 
aperiodic series, can arise depending on the magnitude 
of the key parameter, A. We shall not need to repeat 
discussion of these detailed consequences in the pre- 
sent paper. Instead, we discuss briefly the variant form 
of regression equation (in (Xs, Yx) coordinates) that is 
specifically more appropriate to the fabricated ferrom- 
agnet sets. The role of 0t then is principally to ensure 
that the reiterated values, YN + 1, keep within the phys- 
ically permitted range of 0 < Y < 1, even when the 
corresponding value of A is such that AYs(1 - YN) 
can, of itself, exceed this range. This observation may 
be surmised from the peak recursion values, A/4, 
which are summarized in Table I[, from which we see 
that the c~ values decrease monotonically from type 2 
to type T ferromagnet sets, to the extent that negative 
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values are obtained for three of the four sets assigned 
as type T. 

4. Magnetic alignment in fabricated 
magnet sets 

The fabrication route of rare-earth (RE) high-coerciv- 
ity magnets, which are classed as type 2, generally 
includes powder metallurgical process stages. This 
contrasts with type 1 magnets which have limited 
coercivities and can directly be magnetized in the net 
bulk form. Hence, the elucidation of the demagnetiz- 
ation characteristics of type 2 magnets will :be more 
complicated due to the need to explain the conse- 
quences of the powder metallurgical process stages as 
well as the purely magnetic material characteristics 
which predominate in the case of type 1 ferromagnets. 
A major complication is that the magnetic alignment 
stage for a type 2 magnet is performed on an assembly 
of fine (micrometre) powder particles before sub- 
sequent compaction and bonding operations. A recent 
review (Kumar [16]) of the properties of RETM 5 and 
RE2TM17 ferromagnets ( T M = t r a n s i t i o n  metal) 
comprehensively discusses both the basic material as 
well as fabrication process aspects that are represent- 
ative of these basically type 2 magnets, and provides 
the background to the following discussions in the 
present paper. 

4.1. B,, Hcl and HoB 
The characteristics of the demagnetization quadrant 
in the hysteresis loop of a particular magnet are 
summarized numerically in terms of a few specific 
empirically measured quantities such as B,, H~ and 
HoB. Elucidation of the demagnetization behaviour 
then usually proceeds via attempts to derive each of 
these quantities separately as a function of several 
identified independent parameters which are intrinsic 
to the particular material and the fabrication process 
stages and conditions. Formally, this is expressed 
as B,=B,(a,b,c . . . ) ,  Hcl=Hol(a,b,c.. .) and H ~  
= H~B(a,b,c...), where a, b, c . . . .  refer to each of the 

independent parameters in the functional expressions 
for Br, Hc~ and H,B. Although not stated explicitly 
here, the full functional arguments will probably be far 
more complex, containing also non-linear terms so 
that the effects of an individual parameter cannot 
strictly be considered in isolation. A similar problem 
exists practically where it will be impossible to prepare 
magnets so that they are different in just one intrinsic 
parameter. Hence the dilemma that a tractable theor- 
etical analysis will require so much over-simplification 
that is impossible to test the results empirically; it 
should then be useful to consider alternative ap- 
proaches which analyse the consequences as inter- 
relationships involving directly the empirical values of 
B,, Hc~ and HoB. However, it is then still necessary to 
assume that simple relations exist between these para- 
meters of a particular magnet and the corresponding 
parameters of a second magnet, before the magnetic 
behaviour of the two can be compared with each 
other. 



4.2. X, Y ratios and demagnetization quadrant 
form 

Our early attempts to analyse magnetic data directly 
suggested that the assumption of simple relations 
between like parameters of two different magnets is 
not entirely satisfactory. In particular, it was observed 
that between magnets that are similar both with re- 
spect to material as well as aspects of fabrication 
processes, there is a clearer correlation when the 
coercivity values are scaled by the respective B r values 
of these magnets [1, 2]. The resultant X, Y ratios, 
when plotted, define a common curve for certain 
similar magnets which we then consider as constitut- 
ing a set. Regression expressions fitted to each curve 
provide the equations relating the X, Y values for the 
different members of the set. These observations are 
now seen as arising from certain geometrical scaling 
aspects of the demagnetization quadrant that are 
common to the magnets within any specific set. We 
consider here demagnetization quadrants that are 
idealized as being of two linear segments, 
0_<H<_HoB and HcB_<H_<Ho~, where H is the 
applied demagnetizing field, ignoring its negative dir- 
ection in opposition to B, as has been the case with the 
X, Y ratios themselves [1, 2]. Examples of such graphs 
are shown in Fig. 8 for the cases of (a) Y = HoB = Hcj 
(the limiting Y = X case, Table I), and (b d) for which 
HoB = 0.5, 0.65 and 0.8, respectively, for the SmCo_ 5 
polymer bonded, M(F) set. In fact the figure shows a 
superposition of the X versus Y common curve (Y 
= 0.567X ~ and a number of demagnetization 

quadrant graphs. Superposition is made possible, 
without loss of generality, by taking Br as having unit 
value. In this way, the vertical axis can either represent 
Y or 4rcM, where M ( = I) is the magnetization which 
is numerically the difference between B and the de- 
magnetizing field, H. Similarly, the horizontal axis can 
equally well represent X or the demagnetizing applied 
field, H. It is clear from this figure that all the 
0 < H < HoB (low H) segments of the demagnetization 
quadrants will originate at the Y = Br = 1 corner of 
the figure and terminate at the respective H = HoB 
( = Y) intersections on the Y = X (or 4r~M = H) line. 
The respective HoB --< H < Ho~ (high H) segments ter- 
minate at the appropriate H = H~I ( =  X) intersec- 
tions on the horizontal (H) axis. From these consid- 

erations we see that it is not the individual segments 
that are specific to the magnets of a particular set but 
rather the characteristic matching of the segments that 
together form the demagnetization quadrant. This 
characteristic matching provides the geometrical rea- 
son for the common trajectory that is obtained when 
the empirical (X, Y) data of a particular magnet set are 
plotted. 

In Fig. 9 the linearized demagnetization quadrants 
are shown in two pairs for the four identified type 2 
sets. For  the polymer bonded, SmCo x ~ 5, pair of M(F) 
and HD(F), the example shown is that of Ho~ = 0.8 
while Hc~ 3 = 0.95 for the other pair of sintered 
PrSmCo(A) and NdDyFeB magnet sets. Despite the 
higher Y value, the projected Ho~ (or X) points for the 
latter pair fall between those of the polymer-bonded 
pair. Furthermore, as observed above, the type 2 
logarithmic regression graphs are concurrent only at a 
point outside the physical Y = 1 limit. Hence at any 
particular Y value the high H segments of the type 2 
sets are always all distinct from each other. Finally, 
the H~ (or X) values for the polymer-bonded sets with 
Y = 0.95 both far exceed those of the sintered sets, and 
are not shown in Fig. 9 as they lie outside the X range 
for the chosen X scale. The sintered pair of type 2 
magnets always have significantly steeper high H 
segments than the polymer-bonded pair for the same 
low H segment because, as noted above, the logarith- 
mic curves of the type 2 sets tend towards concurrency 
only for Y = 1.0695, which exceeds the physical limit- 
ing value of unity. 

4.3. Magnetic domain pattern and flow 
analogue. 

The nature of the particular (X, Y) trajectory has 
hitherto been applied to classify fabricated magnet 
sets into different types [3]. The present discussion 
suggests the subtly different aspect that the magnets in 
a particular set have a specific admixture of type 1 
(represented by the low H segments) and type 2 (high 
H segments) demagnetization characteristics. Regres- 
sion fit constants (K, L for logarithmic regression and 
~, [3, and 3' for second-order polynomial regression) 
can then be obtained from empirical data to para- 
metrize the demagnetization characteristics of a par- 
ticular fabricated magnet set. 
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Figure 8 Demagnetization quadrants  in terms of 4rcM versus H, 
and each as two linear segments for various examples associated 
with the M(F) magnet  set: (a) for the limiting Y = X case where H~B 
= Hcj; (b d) for the cases of H~B = 0.5, 0.65 and 0.8, respectively. 

Broken lines show the relationship between the segments and the 
logarithmic curve for the magnet  set, for HoB = 0.8. 
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Figure 9 Demagnetization quadrants  in terms of 4~zM versus H, 
and each as two linear segments for various examples associated 
with (a) the polymer-bonded M(F) and (b) HD(F) sets for the case 
HoB -- 0.8 and with (c) the sintered PrSmCo(A) and (d) NdDyFeB 
sets for HoB = 0.95. 
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Magnetic domain patterns that are associated with 
magnets that have type 1 demagnetization character- 
istics tend to be geometrically simple, mainly Eu- 
clidian polygonal, in section. With increasing type 2 
demagnetization characteristics, the domain patterns 
become increasingly more complex, and suggest more 
of fractal geometry [17, 18]. This suggestion that type 
1 and type 2 domain patterns are fundamentally 
geometrically distinct requires further investigation. 
For the present we shall only briefly consider certain 
aspects of this inference by comparison of the features 
from the logarithmic regression (Y = K X  L) analysis of 
fabricated magnet sets with a fluid (Poiseuille) flow 
system analogue [19]. In particular, the domain pat- 
tern geometry of a fabricated cylindrical magnet that 
is being demagnetized in a field, H (ignoring a negative 
sign), is configured in an analogous way as an in- 
stantaneous flow pattern associated with Poiseuille 
flow in a cylindrical bore under an applied pressure 
head. The demagnetization of the magnet as H is 
varied alters the domain pattern, just as changes in the 
pressure head affect the flow pattern. Observed poly- 
gonal domain patterns that are associated with a 
linear Y = X relation and a low H regime are geomet- 
rically analogous to a laminar flow, which is a linear 
function of changing pressure head over a low-pre- 
ssure range. Complex (fractal) domain patterns occur 
with increasing type 2 character which is manifested 
for a high H regime; analogously, increasingly turbu- 
lent flow is obtained with higher pressure head. 

Just as laminar and turbulent flow (patterns) are 
analysed as distinct regimes in a fluid flow system, 
there is the analogy that the type 1 and type 2 
magnetic domain patterns represent distinctive mag- 
netic alignment geometries. Elucidation of the details 
of transition between the two regimes of flow consti- 
tutes a complicated and important branch of fluid 
dynamics in which the effects of a variety of physical 
disturbances of different scale are studied with respect 
to the manner in which they can induce the 
laminar-turbulent flow transition [19, 20]. Similarly, 
the present identification of the two distinctive mag- 
netic domain pattern (type 1 and type 2) modes can 
allow an enhanced understanding of the different 
mechanisms that can trigger changes between these 
modes. In particular, discussion of domain nucleation 
and pinning mechanisms for demagnetization within a 
single magnet can be viewed afresh in terms of how 
they operate to account for the difference in the 
admixtures of type 1 and type 2 magnetic alignment 
modes between similar magnets which form a particu- 
lar (X, Y) set, as well as between magnets associated 
with different (X, Y) sets. 

5. Conclusion 
Discrete point values such as Br, HoB and Hc~ cannot 
adequately fully parameterize the quasi-continuous 
demagnetization quadrant of the hysteresis loop for a 
ferromagnet. Consequently, even the comparison be- 
tween the demagnetization behaviour of two magnets 
for which all the three values of one can never be 

assumed to be exactly equal (not just in the sense of 
being measured to be empirically different but also in 
that numerically equal values can arise from different 
admixtures of fundamental magnetic alignment geo- 
metries), will be of limited usefulness. This deficiency 
suggests that the demagnetization characteristics of 
different magnets for which the ratios (X, Y) define a 
common trajectory can instead be usefully inter-com- 
pared on the basis of the equation(s) for the trajectory. 
Logarithmic and second-order polynomial regression 
analyses of the trajectories for empirical data that 
define 14 varied sets of fabricated ferromagnets sug- 
gest that there may be two basic modes of demagnetiz- 
ation for which the corresponding domain patterns 
are analogous to the two distinct laminar and turbu- 
lent flow patterns of a fluid flow system. Future work 
exploiting the possible analogy between demagnetiz- 
ation modes and fluid flow modes and their respective 
transition trigger mechanisms is envisaged. 
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